Search
Generic filters
Branche
on
Dreidimensionale Darstellung der DNA-Organisation

Um in einen Zellkern zu passen, ist unser Erbgut komplex aufgewickelt und gefaltet, vergleichbar etwa mit einem 20 km langen Faden. © SvitDen / iStock / Getty Images Plus

| | |

Neuartige Methode: Dreidimensionale Darstellung der DNA-Organisation

Wissenschaftler am IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften, und KollegInnen entwickeln eine bahnbrechende Methode, um erstmals dreidimensional zu erfassen, wie sich neu hergestellte DNA organisiert und wie sich Schwester-Chromosomen zueinander verhalten.

Unsere DNA beinhaltet die Summe aller genetischen Informationen für einen Organismus und wäre, wenn man sie auseinanderziehen würde, unglaubliche zwei Meter lang. Um in einen Zellkern zu passen, ist unser Erbgut komplex aufgewickelt und gefaltet, vergleichbar etwa mit einem 20 km langen Faden, der in einen Tennisball zusammengeknüllt wird. Bei jeder Teilung wird das Erbgut auf zwei Tochterzellen aufgeteilt und muss wiederum richtig gefaltet und verpackt werde, ein im wahrsten Sinne ‚verwirrender‘ Prozess.

Rätsel der Zellbiologie

Die Frage nach der dreidimensionalen Organisation unserer DNA ist eines der großen Rätsel der Zellbiologie. Denn um Gene zu aktivieren oder zu unterdrücken, müssen Bereiche, die gar nicht in unmittelbarer Nähe auf der DNA liegen, miteinander in Kontakt kommen. Möglich wird dies, weil sich die DNA gezielt faltet und so organisiert, dass gewisse Passagen im Erbgut sich räumlich näherkommen.

Auch bei Reparaturvorgängen ist die dreidimensionale Organisation der DNA-Stränge wesentlich, damit wie durch eine Sicherheitskopie fehlerhafte Passagen im Erbgut ausgebessert werden können. Bislang war es den ForscherInnen nicht möglich, die räumliche Organisation neu hergestellter Schwester-DNA-Moleküle zu bestimmen und Kontaktpunkte zwischen den beiden Strängen zu finden.

Eine am IMBA entwickelte Technologie macht dies nun erstmals möglich. In Zusammenarbeit der Teams von Daniel Gerlich und Stefan Ameres am IMBA, sowie von Ronald Micura an der Universität Innsbruck, wurde eine spezielle Methode entwickelt.

Kartierung der Kontaktpunkte

„Mit unserer neuen scsHi-C Methode (sister chromatid sensitive chromosome conformation capture) können wir die relative räumliche Anordnung der beiden replizierten Schwester-DNA-Moleküle in jedem Chromosom kartieren. Dabei werden die beiden DNA-Stränge unterschiedlich chemisch markiert. Diese Markierungen lassen sich anschließend durch Sequenzierung leicht erfassen“, erklärt Michael Mitter, Doktorand am IMBA und Erstautor.

Ein Trick, der es den ForscherInnen nun möglich macht, Kontaktpunkte sowohl innerhalb der DNA als auch zwischen den beiden Kopien zu bestimmen. Durch eine Kartierung dieser Kontaktpunkte war es dem Team rund um Daniel Gerlich auch möglich, die Funktion von wichtigen Molekülen zu bestimmen, welche die DNA falten und verknüpfen, und somit die ausgeklügelte 3D-Organisation des Erbguts mitsteuern.

„Mit der Entwicklung der scsHi-C Technologie ist es uns möglich, bisher unerforschte biologische Fragestellungen, wie etwa die räumliche Organisation des Genoms bei Reparaturvorgängen im Erbgut zu untersuchen“, so IMBA-Gruppenleiter Daniel Gerlich über das vom WWTF, dem Wiener Wissenschafts-, Forschungs- und Technologiefonds –finanzierte Forschungsprojekt, das breite technologische Anwendungen in Aussicht stellt.

Quelle: idw – Informationsdienst Wissenschaft


Originalpublikation: Michael Mitter et al.; Conformation of sister chromatids in the replicated human genome’; Nature, 2020, DOI :10.1038/s41586-020-2744-4

Newsletter abonnieren

Newsletter Icon MTA Blau 250x250px

Erhalten Sie die wichtigsten MTA-News und Top-Jobs bequem und kostenlos per E-Mail.

Mehr zum Thema

Krebszellen.
Abbildung eines Mikroskops.

Das könnte Sie auch interessieren

Immunsystem
Vitamin D reiche Lebensmittel.
C. elegans Fadenwurm